1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#![warn(rust_2018_idioms)]
#![deny(clippy::all, clippy::pedantic)]
#![allow(
    clippy::default_trait_access,
    clippy::derive_partial_eq_without_eq,
    clippy::doc_markdown,
    clippy::large_enum_variant,
    clippy::match_single_binding,
    clippy::missing_errors_doc,
    clippy::module_name_repetitions,
    clippy::must_use_candidate,
    clippy::single_match_else,
    clippy::too_many_lines,
    clippy::type_complexity,
    rustdoc::bare_urls,
)]

//! Bindings for the Kubernetes client API, generated from the OpenAPI spec.
//!
//! Each supported version of Kubernetes is represented by a feature name (like `v1_9`). Only one such feature can be enabled at a time.
//!
//! These docs have been generated with the `

#![cfg_attr(k8s_openapi_enabled_version="1.20", doc = "v1_20")]
#![cfg_attr(k8s_openapi_enabled_version="1.21", doc = "v1_21")]
#![cfg_attr(k8s_openapi_enabled_version="1.22", doc = "v1_22")]
#![cfg_attr(k8s_openapi_enabled_version="1.23", doc = "v1_23")]
#![cfg_attr(k8s_openapi_enabled_version="1.24", doc = "v1_24")]
#![cfg_attr(k8s_openapi_enabled_version="1.25", doc = "v1_25")]
#![cfg_attr(k8s_openapi_enabled_version="1.26", doc = "v1_26")]
#![cfg_attr(k8s_openapi_enabled_version="1.27", doc = "v1_27")]

//! ` feature enabled. To see docs for one of the other supported versions, please generate the docs locally with `cargo doc --features 'v1_<>'`
//!
//!
//! # Examples
//!
//! ## Resources
//!
//! This example creates an instance of [`api::core::v1::PodSpec`] with no other properties set, and pretty-prints it.
//!
//! ```rust
//! use k8s_openapi::api::core::v1 as api;
//!
//! fn main() {
//!     let pod_spec: api::PodSpec = Default::default();
//!     println!("{pod_spec:#?}");
//! }
//! ```
//!
//! ## Client API
//!
#![cfg_attr(feature = "api", doc = r#"
(This requires the `api` feature to be enabled. The feature is enabled by default. See ["Crate features"](#crate-features) below for more details.)

This example executes the [`api::core::v1::Pod::list`] API operation to list all pods inside a namespace.
It demonstrates the common patterns implemented by all API operation functions in this crate:

1. The API function has required parameters and optional parameters. All optional parameters are taken as a single struct with optional fields.

   Specifically for the [`api::core::v1::Pod::list`] operation, the `namespace` parameter is required and taken by the function itself,
   while other optional parameters like `field_selector` are fields of the [`ListOptional`] struct. An instance of
   this struct is taken as the last parameter of `Pod::list`. This struct impls [`Default`] so that you can just pass in `Default::default()`
   if you don't want to specify values for any of the optional parameters.

   Some API operations have a single common type for optional parameters:

   - All create API take optional parameters using the [`CreateOptional`] struct.
   - All delete API take optional parameters using the [`DeleteOptional`] struct.
   - All list API take optional parameters using the [`ListOptional`] struct.
   - All patch API take optional parameters using the [`PatchOptional`] struct.
   - All replace API take optional parameters using the [`ReplaceOptional`] struct.
   - All watch API take optional parameters using the [`WatchOptional`] struct.
   - All delete-collection API take optional parameters using the [`DeleteOptional`] struct for delete options and the [`ListOptional`] struct for list options.

   Other API functions have their own `Optional` structs with fields corresponding to the specific parameters for those functions,
   such as [`api::core::v1::ReadPodLogOptional`] for [`api::core::v1::Pod::read_log`]

1. The function returns an [`http::Request`] value with the URL path, query string, and request body filled out according to the parameters
   given to the function. The function does *not* execute this request. You can execute this `http::Request` using any HTTP client library you want to use.
   It does not matter whether you use a synchronous client like `reqwest`, or an asynchronous client like `hyper`, or a mock client that returns bytes
   read from a test file.

1. For each API operation function, there is a corresponding response type. For `Pod::list` this is [`ListResponse`]`<`[`api::core::v1::Pod`]`>`.
   This is an enum with variants for each of the possible HTTP status codes that the operation can return, and contains the data that the API server would
   return corresponding to that status code. For example, the list-namespaced-pod operation returns a pod list with HTTP 200 OK, so one of the variants of
   that type is `Ok(`[`List`]`<`[`api::core::v1::Pod`]`>)`

1. The response types impl the [`Response`] trait, which contains a single [`Response::try_from_parts`] function. This function takes an [`http::StatusCode`]
   and a `&u8` byte buffer, and tries to parse the byte buffer as the response type. For example, if you executed the request and received an HTTP 200 OK response
   with some bytes, you could call `<ListResponse<Pod> as Response>::try_from_parts(status_code, buf)` and expect to get
   `Ok(ListResponse::<Pod>::Ok(pod_list))` from it.

   Once again, this design ensures that the crate is not tied to a specific HTTP client library or interface. It does not matter how you execute the HTTP request,
   nor whether your library is synchronous or asynchronous, since every HTTP client library gives you a way to get the HTTP response status code and the bytes
   of the response body.

1. The API operation function also returns another value next to the `http::Request`. This value is a function that takes an [`http::StatusCode`] and returns
   a [`ResponseBody`]`<ListResponse<Pod>>`. As mentioned above, `Response::try_from_parts` requires you to maintain a byte buffer for the response body.
   `ResponseBody` is a helper that maintains such a buffer internally. It provides an `append_slice()` function to append slices to this internal buffer,
   and a `parse()` function to parse the buffer as the expected type (`ListResponse<Pod>` in this case).

   It is not *necessary* to use the `ResponseBody` returned by the API operation function to parse the response. The `ResponseBody::parse` function is
   only a wrapper around the underlying `Response::try_from_parts` function, and handles growing and shrinking its inner buffer as necessary. It also
   helps ensure that the response body is parsed as the *correct* type for the operation, `ListResponse<Pod>` in this case, and not some other type.
   However, you can instead use your own byte buffer instead of the `ResponseBody` value and call `ListResponse<Pod>::try_from_parts` yourself.

1. The response types are enums with variants corresponding to HTTP status codes. For example, the `ListResponse<Pod>::Ok` variant corresponds to the
   HTTP 200 response of the list-namespaced-pod API.

   Each response enum also has an `Other` variant, that is yielded when the response status code does not match any of the other variants.
   This variant has a `Result<Option<`[`serde_json::Value`]`>, `[`serde_json::Error`]`>` value.

   If the response body is empty, this value will be `Ok(None)`.

   If the response body is not empty, this value will be an `Ok(Some(value))` or `Err(err)` from attempting to parse that body as a `serde_json::Value`.
   If you expect the response body to be a specific JSON type such as [`apimachinery::pkg::apis::meta::v1::Status`], you can use the `serde_json::Value`
   as a [`serde::Deserializer`] like `let status = <Status as Deserialize>::deserialize(value)?;`. On the other hand, if you expect the response body to not be
   a JSON value, then ignore the `Err(err)` and parse the raw bytes of the response into the appropriate type.

Also see the `get_single_value` and `get_multiple_values` functions in
[the `k8s-openapi-tests` directory in the repository](https://github.com/Arnavion/k8s-openapi/tree/master/k8s-openapi-tests/src)
for examples of how to use a synchronous client with this style of API.

```rust,no_run
// Re-export of the http crate since it's used in the public API
use k8s_openapi::http;

use k8s_openapi::api::core::v1 as api;

# struct Response;
# impl Response {
#     fn status_code(&self) -> http::StatusCode {
#         unimplemented!()
#     }
#     fn read_into(&self, _buf: &mut [u8]) -> std::io::Result<usize> {
#         unimplemented!()
#     }
# }
#
// Assume `execute` is some function that takes an `http::Request` and
// executes it synchronously or asynchronously to get a response. This is
// provided by your HTTP client library.
//
// Note that the `http::Request` values returned by API operation functions
// only have a URL path, query string and request body filled out. That is,
// they do *not* have a URL host. So the real `execute` implementation
// would first mutate the URL of the request to an absolute URL with
// the API server's authority, add authorization headers, etc before
// actually executing it.
fn execute(req: http::Request<Vec<u8>>) -> Response { unimplemented!(); }

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a `http::Request` to list all the pods in the
    // "kube-system" namespace.
    let (request, response_body) =
        api::Pod::list("kube-system", Default::default())?;

    // Execute the request and get a response.
    // If this is an asynchronous operation, you would await
    // or otherwise yield to the event loop here.
    let response = execute(request);

    // Got a status code from executing the request.
    let status_code: http::StatusCode = response.status_code();

    // Construct the `ResponseBody<ListResponse<Pod>>` using the
    // constructor returned by the API function.
    let mut response_body = response_body(status_code);

    // Buffer used for each read from the HTTP response.
    let mut buf = Box::new([0_u8; 4096]);

    let pod_list = loop {
        // Read some bytes from the HTTP response into the buffer.
        // If this is an asynchronous operation, you would await or
        // yield to the event loop here.
        let read = response.read_into(&mut *buf)?;

        // `buf` now contains some data read from the response. Append it
        // to the `ResponseBody` and try to parse it into
        // the response type.
        response_body.append_slice(&buf[..read]);
        let response = response_body.parse();
        match response {
            // Successful response (HTTP 200 and parsed successfully)
            Ok(k8s_openapi::ListResponse::Ok(pod_list)) =>
                break pod_list,

            // Some unexpected response
            // (not HTTP 200, but still parsed successfully)
            Ok(other) => return Err(format!(
                "expected Ok but got {status_code} {other:?}").into()),

            // Need more response data.
            // Read more bytes from the response into the `ResponseBody`
            Err(k8s_openapi::ResponseError::NeedMoreData) => continue,

            // Some other error, like the response body being
            // malformed JSON or invalid UTF-8.
            Err(err) => return Err(format!(
                "error: {status_code} {err:?}").into()),
        }
    };

    for pod in pod_list.items {
        println!("{pod:#?}",);
    }

    Ok(())
}
```
"#)]
#![cfg_attr(not(feature = "api"), doc = r#"
The `api` feature has been disabled, so the client API is not available. See ["Crate features"](#crate-features) below for more details.
"#)]
//!
//!
//! # Crate features
//!
//! - This crate contains several `v1_*` features. Enabling one of the `v1_*` features selects which version of the Kubernetes API server this crate should target.
//!   For example, enabling the `v1_23` feature means the crate will only contain the API exposed by Kubernetes 1.23. It will not expose API
//!   that were removed in 1.23 or earlier, nor any API added in 1.24 or later.
//!
//! - The crate also contains a feature named `api`. If this feature is disabled, the library will only contain the resource types like [`api::core::v1::Pod`],
//!   and not the associated operation functions like
#![cfg_attr(feature = "api", doc = "[`api::core::v1::Pod::read`]")]
#![cfg_attr(not(feature = "api"), doc = "`api::core::v1::Pod::read`")]
//! . The `Response` and `Optional` types for the operation functions
//!   will also not be accessible.
//!
//!   This feature is enabled by default, but can be disabled if your crate does not need the operation functions to save on compile time and resources.
//!
//! One and only one of the `v1_*` features must be enabled at the same time, otherwise the crate will not compile. This ensures that all crates in the crate graph
//! use the same types. If it was possible for one library crate to use `api::core::v1::Pod` corresponding to v1.50 and another to use the type
//! corresponding to v1.51, an application would not be able to use the same `Pod` value with both.
//!
//! Thus, it is recommended that only application crates must enable one of the `v1_*` features, corresponding to the version of Kubernetes
//! that the application wants to support.
//!
//! ```toml
//! # For application crates
//!
//! [dependencies]
//! k8s-openapi = { version = "...", features = ["v1_50"] }
//! ```
//!
//! If you're writing a library crate, your crate *must not* enable any features of `k8s-openapi` directly. The choice of which feature to enable
//! must be left to any application crates that use your library. This ensures that all `k8s-openapi`-using dependencies in that application crate's dependency graph
//! use the same set of `k8s-openapi` types and are interoperable.
//!
//! If your library crate has tests or examples, you should also add a dev-dependency on `k8s-openapi` in addition to the direct dependency,
//! and enable a version feature only for that dev-dependency.
//!
//! ```toml
//! # For library crates
//!
//! [dependencies]
//! k8s-openapi = "..."
//!
//! [dev-dependencies]
//! k8s-openapi = { version = "...", features = ["v1_50"] }
//! ```
//!
//! However, commands like `cargo check` and `cargo doc` do not build dev dependencies, so they will not enable the feature and will fail to build. There are two ways
//! you can resolve this:
//!
//! 1. Add a feature to your library that enables one of the k8s-openapi `v1_*` features, and then remember to enable this feature when running such commands.
//!
//!    ```toml
//!    [features]
//!    __check = ["k8s-openapi/v1_50"]
//!    ```
//!
//!    ```sh
//!    $ cargo check --features __check
//!    ```
//!
//! 1. Define the `K8S_OPENAPI_ENABLED_VERSION` env var when running such commands:
//!
//!    ```sh
//!    $ K8S_OPENAPI_ENABLED_VERSION=1.50 cargo check
//!    ```
//!
//!
//! # Conditional compilation
//!
//! As the previous section explained, library crates must not enable any version features in their `k8s-openapi` dependency. However, your library crate may
//! need to know about which version gets selected eventually.
//!
//! For example:
//!
//! 1. Your crate creates a service spec and wants to set the cluster IP. This field is only available in Kubernetes 1.20+,
//!    so you want your crate to fail to compile if a lower feature was enabled.
//!
//! 1. Your crate creates a service spec and wants to set the cluster IP, but you want it to be skipped when compiling for older versions.
//!
//! There are two ways for your crate to determine which feature of `k8s-openapi` is enabled:
//!
//! 1. The `k8s-openapi` crate exports [`k8s_if_*` macros,](#macros) which either expand to their contents or don't. See the docs of the macros for more details.
//!
//!    With these macros, the two cases above would be solved like this:
//!
//!    - ```rust,ignore
//!      // The compile_error!() is only emitted if 1.20 or lower is selected.
//!      k8s_openapi::k8s_if_le_1_20! {
//!          compile_error!("This crate requires the v1_21 (or higher) feature to be enabled on the k8s-openapi crate.");
//!      }
//!
//!      ...
//!
//!      let service_spec = k8s_openapi::api::core::v1::ServiceSpec {
//!          cluster_ips: ...,
//!          ...
//!      };
//!      ```
//!
//!    - ```rust,ignore
//!      let mut service_spec = k8s_openapi::api::core::v1::ServiceSpec {
//!          ...
//!      };
//!
//!      k8s_openapi::k8s_if_ge_1_20! {
//!          service_spec.cluster_ips = ...;
//!      }
//!      ```
//!
//! 1. The `k8s-openapi` crate emits the selected version number as metadata that your crate can read in a build script
//!    from the `DEP_K8S_OPENAPI_*_VERSION` env var.
//!
//!    ```rust,no_run
//!    // Your crate's build.rs
//!
//!    fn main() {
//!        let k8s_openapi_version: u32 =
//!            std::env::vars_os()
//!            .find_map(|(key, value)| {
//!                let key = key.into_string().ok()?;
//!                if key.starts_with("DEP_K8S_OPENAPI_") && key.ends_with("_VERSION") {
//!                    let value = value.into_string().ok()?;
//!                    Some(value)
//!                }
//!                else {
//!                    None
//!                }
//!            }).expect("DEP_K8S_OPENAPI_*_VERSION must have been set by k8s-openapi")
//!            .parse().expect("DEP_K8S_OPENAPI_*_VERSION is malformed");
//!
//!        // k8s_openapi_version has the format 0x00_MM_NN_00.
//!        //
//!        // - MM is the major version.
//!        // - NN is the minor version.
//!        //
//!        // Thus, if the v1_20 feature was enabled, k8s_openapi_version would be 0x00_01_14_00
//!
//!        // The build script can now do arbitrary things with the information.
//!        // For example, it could define custom cfgs:
//!        if k8s_openapi_version >= 0x00_01_14_00 {
//!            println!(r#"cargo:rustc-cfg=k8s_service_spec_supports_cluster_ips"#);
//!        }
//!
//!        // or emit new source code files under OUT_DIR, or anything else a build script can do.
//!    }
//!    ```
//!
//!    With these cfgs, the two cases above would be solved like this:
//!
//!    - ```rust,ignore
//!      // The compile_error!() is only emitted if 1.19 or lower is selected.
//!      #[cfg(not(k8s_service_spec_supports_cluster_ips))]
//!      compile_error!("This crate requires the v1_20 (or higher) feature to be enabled on the k8s-openapi crate.");
//!
//!      ...
//!
//!      let service_spec = k8s_openapi::api::core::v1::ServiceSpec {
//!          cluster_ips: ...,
//!          ...
//!      };
//!      ```
//!
//!    - ```rust,ignore
//!      let service_spec = k8s_openapi::api::core::v1::ServiceSpec {
//!          #[cfg(not(k8s_service_spec_supports_cluster_ips))]
//!          cluster_ips: ...,
//!          ...
//!      };
//!      ```
//!
//! Note that both approaches require your crate to have a direct dependency on the `k8s-openapi` crate. Neither approach is available if your crate
//! only has a transitive dependency on the `k8s-openapi` crate.
//!
//! The macros approach is easier to use since it doesn't require a build script.
//!
//! The build script method lets you emit arbitrary cfgs, emit arbitrary source code, and generally gives you more options, at the cost of needing a build script.
//! `cfg()`s can be used in places where macros cannot, such as how the second example above shows it being used on a single field in a struct literal.
//!
//!
//! # Custom resource definitions
//!
//! The [`k8s-openapi-derive` crate](https://crates.io/crates/k8s-openapi-derive) provides a custom derive for generating clientsets
//! for custom resources. See that crate's docs for more information.

pub use chrono;
#[cfg(feature = "api")]
pub use http;
#[cfg(feature = "api")]
pub use percent_encoding;
#[cfg(feature = "schemars")]
pub use schemars;
pub use serde;
pub use serde_json;
pub use serde_value;
#[cfg(feature = "api")]
pub use url;

#[cfg(feature = "api")]
#[path = "api.rs"]
mod _api;
#[cfg(feature = "api")]
pub use _api::{
    RequestError,
    Response, ResponseBody, ResponseError,
    percent_encoding2,
};

#[path = "byte_string.rs"]
mod _byte_string;
pub use _byte_string::ByteString;

#[path = "deep_merge.rs"]
mod _deep_merge;
pub use self::_deep_merge::{DeepMerge, strategies as merge_strategies};

#[path = "resource.rs"]
mod _resource;
pub use _resource::{
    Resource,
    ResourceScope, ClusterResourceScope, NamespaceResourceScope, SubResourceScope,
    ListableResource,
    Metadata,
    api_version, group, kind, version,
};

#[cfg(k8s_openapi_enabled_version="1.20")] mod v1_20;
#[cfg(k8s_openapi_enabled_version="1.20")] pub use self::v1_20::*;

#[cfg(k8s_openapi_enabled_version="1.21")] mod v1_21;
#[cfg(k8s_openapi_enabled_version="1.21")] pub use self::v1_21::*;

#[cfg(k8s_openapi_enabled_version="1.22")] mod v1_22;
#[cfg(k8s_openapi_enabled_version="1.22")] pub use self::v1_22::*;

#[cfg(k8s_openapi_enabled_version="1.23")] mod v1_23;
#[cfg(k8s_openapi_enabled_version="1.23")] pub use self::v1_23::*;

#[cfg(k8s_openapi_enabled_version="1.24")] mod v1_24;
#[cfg(k8s_openapi_enabled_version="1.24")] pub use self::v1_24::*;

#[cfg(k8s_openapi_enabled_version="1.25")] mod v1_25;
#[cfg(k8s_openapi_enabled_version="1.25")] pub use self::v1_25::*;

#[cfg(k8s_openapi_enabled_version="1.26")] mod v1_26;
#[cfg(k8s_openapi_enabled_version="1.26")] pub use self::v1_26::*;

#[cfg(k8s_openapi_enabled_version="1.27")] mod v1_27;
#[cfg(k8s_openapi_enabled_version="1.27")] pub use self::v1_27::*;

include!(concat!(env!("OUT_DIR"), "/conditional_compilation_macros.rs"));