pub struct ValidationRule {
    pub message: Option<String>,
    pub rule: String,
}
Expand description

ValidationRule describes a validation rule written in the CEL expression language.

Fields§

§message: Option<String>

Message represents the message displayed when validation fails. The message is required if the Rule contains line breaks. The message must not contain line breaks. If unset, the message is “failed rule: {Rule}”. e.g. “must be a URL with the host matching spec.host”

§rule: String

Rule represents the expression which will be evaluated by CEL. ref: https://github.com/google/cel-spec The Rule is scoped to the location of the x-kubernetes-validations extension in the schema. The self variable in the CEL expression is bound to the scoped value. Example: - Rule scoped to the root of a resource with a status subresource: {“rule”: “self.status.actual <= self.spec.maxDesired”}

If the Rule is scoped to an object with properties, the accessible properties of the object are field selectable via self.field and field presence can be checked via has(self.field). Null valued fields are treated as absent fields in CEL expressions. If the Rule is scoped to an object with additionalProperties (i.e. a map) the value of the map are accessible via self\[mapKey\], map containment can be checked via mapKey in self and all entries of the map are accessible via CEL macros and functions such as self.all(...). If the Rule is scoped to an array, the elements of the array are accessible via self\[i\] and also by macros and functions. If the Rule is scoped to a scalar, self is bound to the scalar value. Examples: - Rule scoped to a map of objects: {“rule”: “self.components[‘Widget’].priority < 10”} - Rule scoped to a list of integers: {“rule”: “self.values.all(value, value >= 0 && value < 100)”} - Rule scoped to a string value: {“rule”: “self.startsWith(‘kube’)”}

The apiVersion, kind, metadata.name and metadata.generateName are always accessible from the root of the object and from any x-kubernetes-embedded-resource annotated objects. No other metadata properties are accessible.

Unknown data preserved in custom resources via x-kubernetes-preserve-unknown-fields is not accessible in CEL expressions. This includes: - Unknown field values that are preserved by object schemas with x-kubernetes-preserve-unknown-fields. - Object properties where the property schema is of an “unknown type”. An “unknown type” is recursively defined as:

  • A schema with no type and x-kubernetes-preserve-unknown-fields set to true
  • An array where the items schema is of an “unknown type”
  • An object where the additionalProperties schema is of an “unknown type”

Only property names of the form \[a-zA-Z_.-/\]\[a-zA-Z0-9_.-/\]* are accessible. Accessible property names are escaped according to the following rules when accessed in the expression: - ‘’ escapes to ‘underscores’ - ‘.’ escapes to ‘dot’ - ‘-’ escapes to ‘dash’ - ‘/’ escapes to ‘slash’ - Property names that exactly match a CEL RESERVED keyword escape to ‘{keyword}__’. The keywords are: “true”, “false”, “null”, “in”, “as”, “break”, “const”, “continue”, “else”, “for”, “function”, “if”, “import”, “let”, “loop”, “package”, “namespace”, “return”. Examples:

  • Rule accessing a property named “namespace”: {“rule”: “self.namespace > 0”}
  • Rule accessing a property named “x-prop”: {“rule”: “self.x__dash__prop > 0”}
  • Rule accessing a property named “redact__d”: {“rule”: “self.redact__underscores__d > 0”}

Equality on arrays with x-kubernetes-list-type of ‘set’ or ‘map’ ignores element order, i.e. [1, 2] == [2, 1]. Concatenation on arrays with x-kubernetes-list-type use the semantics of the list type:

  • ‘set’: X + Y performs a union where the array positions of all elements in X are preserved and non-intersecting elements in Y are appended, retaining their partial order.
  • ‘map’: X + Y performs a merge where the array positions of all keys in X are preserved but the values are overwritten by values in Y when the key sets of X and Y intersect. Elements in Y with non-intersecting keys are appended, retaining their partial order.

Trait Implementations§

source§

impl Clone for ValidationRule

source§

fn clone(&self) -> ValidationRule

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for ValidationRule

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl DeepMerge for ValidationRule

source§

fn merge_from(&mut self, other: Self)

Merge other into self.
source§

impl Default for ValidationRule

source§

fn default() -> ValidationRule

Returns the “default value” for a type. Read more
source§

impl<'de> Deserialize<'de> for ValidationRule

source§

fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl PartialEq<ValidationRule> for ValidationRule

source§

fn eq(&self, other: &ValidationRule) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl Serialize for ValidationRule

source§

fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl StructuralPartialEq for ValidationRule

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,